
3.3.2 Logical conditions

To show many uses of binary variables we will take as an example a set of projects that we may or may
not decide to do. We shall call the projects rather unimaginatively A, B, C, D, E, F, G and H and with each
of these projects we will associate a decision variable (a binary variable) which is 1 if we decide to do the
project and 0 if we decide not to do the project. We call the corresponding variables a, b, c, d, e, f , g and
h. So decision variable a taking on the value 1 means that we do project A, whilst a taking on the value
of 0 means that we do not do project A. We are now going to express some constraints in words and see
how they can be modeled using these binary variables.

3.3.2.1 Choice among several possibilities

The first constraint that we might impose is ‘we must choose no more than one project to do’. We can
easily see that this can be expressed by the constraint

a + b + c + d + e + f + g + h  1

Why is this true? Think of selecting one project, for instance project C. If c is 1 then the constraint
immediately says that a, b, d, e, f , g and h must be 0 because there is no other setting for the values of
these variables that will satisfy that constraint. So if c is 1 then all the others are 0 and, as there is nothing
special about C, we can see immediately that the constraint means that we can only do one project.

If the constraint was that we could do no more than three projects then obviously all we have to do in
the constraint above is to replace the 1 by 3 and then we can easily see that in fact we can have no more
than three of the 0-1 variables being equal to 1. It is possible to have just two of them or one of them or
even none of them being equal to 1 but we can certainly not have four or more being 1 and satisfy the
constraint at the same time.

Now suppose that the constraint is that we must choose exactly two of the projects. Then the constraint
we can use to model this is

a + b + c + d + e + f + g + h = 2

Since the binary variables can take only the values 0 or 1, we must have exactly two of them being 1 and
all the rest of them being 0, and that is the only way that we can satisfy that constraint.

3.3.2.2 Simple implications

Now consider an entirely different sort of constraint. Suppose that ‘if we do project A then we must do
project B’. How do we model this? Like a lot of mathematics, it is a question of learning a trick that has
been discovered. Consider the following constraint

b � a

To show that this formulation is correct, we consider all the possible combinations of settings (there are
four of them) of a and b. First, what happens if we do not do project A. If we also do not do project B
then the constraint is satisfied (0 = b � a = 0) and our word constraint is satisfied. If, on the other hand,
we do do project B, then 1 = b � a = 0, and the constraint is again satisfied. Now consider what happens
if we actually do project A, i.e. a = 1. Then the constraint is violated if b = 0 and is satisfied (0 is not � 1)
if b = 1, in other words we do project B. The last case to consider is if we do not do project A, i.e. a = 0
and we do project B, i.e. b = 1. Then the constraint is satisfied (1 � 0) and the word constraint is indeed
satisfied. We can lay these constraints out in a table. There are only four possible conditions: {do A, do
B}, {do A, do not do B}, {do not do A, do not do B}, {do not do A, do B}, and we can see that the illegal
one is ruled out by the algebraic constraint.

Table 3.1: Evaluation of a binary implication constraint

b � a a=0 a=1
b=0 Yes No
b=1 Yes Yes

The next word constraint we consider is ‘if we do project A then we must not do project B’. How might
we set about modeling this? The way to think of it is to notice that the property of notdoing B can be
modeled very easily when we already have a binary variable b representing doing B. We invent a new
variable

b = 1� b

Integer Programming models 34 Applications of optimization with Xpress-MP



where b represents the doing of project B i.e., the project ‘not doing B’. If b = 1 then b = 0 (in other
words, if we do project B then we do not do ‘not B’) whereas if b = 0 then b = 1 (if we do not do project
B then we do project B). This is very convenient and b is called the complement of b. We can use this trick
frequently. Just above we learned how to model ‘if we do A then we must do B’ and now we are trying
to model ‘if we do A then we must not do B’, i.e. ‘if we do A then we must do B’. As ‘if we do A then we
must do B’ was modeled by b � a we can immediately see that the constraint ‘if we do A then we must
do B’ can be obtained by replacing b by b in the constraint, in other words b � a. Replacing b by 1 � b
we get

1� b � a

or
1 � a + b

or alternatively
a + b  1

Now that we have obtained this constraint, it is quite obvious. What it says is that if we do project A (a =
1) then b must be 0. This is exactly what we wanted to model. The point of the somewhat long-winded
argument we showed above, however, is that we have used the result from the first logical constraint
that we wanted to model, plus the fact that we have now introduced the notion of the complement of
the project, to build up a newer and more complicated constraint from these two primitive concepts. This
is what we will do frequently in what follows.

We see an example of this by trying to model the word constraint ‘if we do not do A then we must do
B’, in other word, ‘if not A then B’. We can go back immediately to our first logical constraint ‘if we do A
then we must do B’ which was modeled as b � a. Now we are actually replacing A by not A, so we can
see immediately that our constraint is

b � 1� a

which is
a + b � 1

Again this constraint is obvious now that we have got to it. If we do not do A then a = 0, so b � 1 and
since the maximum value of b is 1 then this immediately means that b = 1. Again we have just taken our
knowledge of how to model ‘if A then B’ and the notion of the complement of a variable to be able to
build up a more complex constraint.

The next constraint to consider is ‘if we do project A we must do project B, and if we do project B we
must do project A’. We have seen that the first is modeled as b � a and the second as a � b. Combining
these two constraints we get

a = b

in other words projects A and B are selected or rejected together, which is exactly what we expressed in
our word constraint.

3.3.2.3 Implications with three variables

The next constraint we consider is ‘if we do project A then we must do project B and project C’. The first
thing to note is that this is in fact two constraints. One, the first, is ‘if we do A then we must do project
B’ and the second constraint is ‘if we do A then we must do project C’. With this observation we can see
that the word constraint can be modeled by the two inequalities

b � a and c � a

so that if a = 1, then both b = 1 and c = 1.

Another constraint might be ‘if we do project A then we must do project B or project C’. It is like the
previous constraint, except we now have an ‘or’ in place of the ‘and’. The constraint

b + c � a

models this correctly. To see this, consider the following situation. If a is 0 then b + c can be anything, and
so b and c are not constrained. If a = 1, then one or both of b and c must be 1.

We may also try to model the inverse situation: ‘if we do Project B or project C then we must do A’. This
is again a case that may be formulated as two separate constraints: ‘if we do B then we must do A’ and
‘if we do C then we must do A’, giving rise to the following two inequalities

a � b and a � c

Integer Programming models 35 Applications of optimization with Xpress-MP



so that if either b = 1 or c = 1, then we necessarily have a = 1.

A harder constraint to model is the following ‘if we do both B and C then we must do A’. How might we
model this? One way to think about it is to express it in the following way: ‘if we do both B and C then
we must not do not-A’, or, ‘we can do at most two of B, C or not-A’ which we would model as

b + c + (1� a)  2

or in other words
b + c � a  1

or perhaps more conventionally
a � b + c � 1

Looking at this last inequality, we can see that there is no effect on a when b and c are 0, or when just
one of b and c is 1, but a does have to be � 1 when both b and c are 1. A binary variable having to be
greater than or equal to 1 means that the binary variable has to be precisely 1.

3.3.2.4 Generalized implications

Generalizing the previous we now might try to model ‘if we do two or more of B, C, D or E then we must
do A’, and our first guess to this might be the constraint

a � b + c + d + e� 1

Certainly if, say, b and c are both equal to 1 then we have a � 1 and so a must equal 1, but the problem
comes when three of the variables are equal to 1, say b, c and d. Then the constraint says that a � 3� 1,
i.e. a � 2, which is impossible as a is a binary variable. So we have to modify the constraint as follows

a � 1
3

· (b + c + d + e� 1)

The biggest value that the expression inside the parentheses can take is 3, if b = c = d = e = 1. The 1
3

in front of the parenthesis means that in the worst case a must be � 1 (so a is equal to 1). But we must
verify that the constraint is true if, say, just b = c = 1 (and d and e are equal to 0). In this case we have
that a � 1

3 · (1 + 1 + 0 + 0� 1) i.e. a � 1
3 . But since a can only take on the values 0 or 1 then the constraint

a � 1
3 means that a must be 1. This is exactly what we want.

We can generalize this to modeling the statement ‘if we do M or more of N projects (B, C, D, ...) then we
must do project A’ by the constraint

a � b + c + d+. . .�M + 1
N �M + 1

So far we have only given one way of modeling each of these constraints. We return to the constraint ‘if
we do B or C then we must do A’ which we modeled as two constraints a � b and a � c. It is possible to
model this with just one constraint if we take this as a special case of the ‘M or more from N’ constraint
we have just modeled. ‘If we do B or C then we must do A’ is the same as ‘if we do M or more of N
projects (B, C, D, ...) then we must do project A’ with M = 1 and N = 2. So the constraint is

a � b + c �M + 1
N �M + 1

i.e.

a � b + c � 1 + 1
2� 1 + 1

i.e.

a � 1
2

· (b + c)

So this single constraint is exactly the same in terms of binary variables as the two constraints which we
produced before. Which of these two representations is better? In fact the representation in terms of
two constraints is better. But both of the two are correct and both will give a correct answer if put into
an Integer Programming system. It is just that the first pair of constraints will in general give a solution
more rapidly.

More and more complicated constraints can be built up from the primitive ideas we have explored so far.
Since these more complicated constraints do not occur very frequently in actual practical modeling we
shall not explore them further. Table 3.2 summarizes the formulations of logical conditions we have seen
in the different paragraphs of Section 3.3.2.

Integer Programming models 36 Applications of optimization with Xpress-MP



Table 3.2: Formulation of logical conditions using binary variables

At most one of A, B,...,H a + b + c + d + e + f + g + h  1
Exactly two of A, B,...,H a + b + c + d + e + f + g + h = 2
If A then B b � a
Not B b = 1� b
If A then not B a + b  1
If not A then B a + b � 1
If A then B, and if B then A a = b
If A then B and C b � a and c � a
If A then B or C b + c � a
If B or C then A a � b and a � c

or alternatively: a � 1
2 · (b + c)

If B and C then A a � b + c � 1
If two or more of B, C, D or E then A a � 1

3 · (b + c + d + e� 1)
If M or more of N projects (B, C, D, ...) then A a � b+c+d+...�M+1

N�M+1

3.3.3 Products of binary variables

We move on to modeling the product of binary variables. Suppose we have three binary variables b1, b2

and b3 and we want to model the equation

b3 = b1 · b2

This is not a linear equation since it involves the product of two variables, so we have to express it in
some linear form. There is a trick and it is another one of these tricks that one just has to learn. Consider
the following set of three inequalities

b3  b1

b3  b2

b3 � b1 + b2 � 1

Then we claim that this represents the product expression that we wish to model. To see we construct
the following Table 3.3.

Table 3.3: Product of two binaries

b1 b2 b3 b3 = b1 · b2? b3  b1? b3  b2? b3 � b1 + b2 � 1?
0 0 0 Yes Yes Yes Yes
0 0 1 No No No Yes
0 1 0 Yes Yes Yes Yes
0 1 1 No No Yes Yes
1 0 0 Yes Yes Yes Yes
1 0 1 No Yes No Yes
1 1 0 No Yes Yes No
1 1 1 Yes Yes Yes Yes

We can see that the column headed b3 = b1 · b2? is true if and only if we have a ‘Yes’ in the three columns
b3  b1?, b3  b2? and b3 � b1 + b2 � 1?, so the three linear equations do exactly represent and are true
at exactly the same time as the product is true.

This is a particularly long winded way of demonstrating the equivalence of the product term and the
three linear equations and in fact now we have got it it is actually quite easy to see why these three
inequalities are correct. Since b3 is b1 multiplied by something that is less than or equal to 1, b3 will
always be less than or equal to b1 and by a similar argument b3 will always be less than or equal to b2.
The only further case we have to consider is when both b1 and b2 are equal to 1 and then we have to
force b3 to be equal to 1. This is done by the constraint b3 � b1 + b2 � 1 which is non restrictive if only
one or none of b1 and b2 are 1 but forces b3 to be 1 when b1 = b2 = 1.

Looking at the constraint this way immediately enables us to model for instance

b4 = b1 · b2 · b3,

in other words the product of three variables, as the four constraints

b4  b1

Integer Programming models 37 Applications of optimization with Xpress-MP



b4  b2

b4  b3

b4 � b1 + b2 + b3 � 2

If any of b1, b2 and b3 are 0 then b4 must be 0 but if b1, b2 and b3 are 1 then b4 must be greater than or
equal to 3� 2, i.e. b4 must be greater than or equal to 1 so b4 must be 1.

3.3.4 Dichotomies: either/or constraints

All the constraints we have seen so far have had to be satisfied simultaneously, but sometimes we need to
model that either Constraint 1 or Constraint 2 has to be satisfied, not necessarily both of them. Consider
the problem:

minimize Z = x1 + x2

subject to x1 � 0, x2 � 0 and
Either 2 · x1 + x2 � 6 (Constraint 1) or x1 + 2 · x2 � 7 (Constraint 2)

Since we have just two variables, we can graph the feasible region, and we have done this in the figure
below where the grey shaded area is the feasible region.

2x

c2

c1

2 4 6

2

4

6

1x

Z=3

Z=1

Z=5

Z=7L

G
8

Figure 3.2: Example of either/or constraints

Point L (x1 = 0, x2 = 3. 5, Z = 3. 5) is a local optimum. Point G (x1 = 3, x2 = 3, Z = 3) is the global minimum.

We can model this with one additional binary variable b.

2 · x1 + x2 � 6 · b

x1 + 2 · x2 � 7 · (1� b)

To show that this is true, we just have to consider the two cases:

b = 0 : 2 · x1 + x2 + x3 � 0 x1 + 2 · x2 + 3 · x3 � 7 Constraint 2 is satisfied
b = 1 : 2 · x1 + x2 + x3 � 6 x1 + 2 · x2 + 3 · x3 � 0 Constraint 1 is satisfied

3.4 Binary variables ‘do everything’

All global entities (general integers, partial integers, semi-continuous variables, and both sorts of Special
Ordered Sets) can be expressed in terms of binary variables. However, as shown by the examples in this
section, it is usually preferable to use the specific global entities.

Integer Programming models 38 Applications of optimization with Xpress-MP


