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We shall consider in these notes the following LP in symmetric form:

P : min cᵀx

s.t. Ax ≥ b (1)

x ≥ 0 (2)

where A ∈ Rm×n, b ∈ Rm and c,x ∈ Rn.

Definitions:

• We say that x̄ is a feasible solution for P if x̄ satisfies (1) and (2).

• If P has a feasible solution then we say that P is feasible; otherwise we say that P
is infeasible.

• P is said to be unbounded if for every scalar α there exists a feasible solution x̄ for
P such that cᵀx̄ ≤ α.

• Suppose P is feasible. Then, P is said to be bounded if there exists a scalar α such
that for every feasible solution x̄ for P , we have cᵀx̄ ≥ α.

• x∗ is an optimal solution for P if x∗ is a feasible solution for P and cᵀx∗ ≤ cᵀx̄ for
every feasible solution x̄.

Our goal, which is the key to a useful mathematical theory of LP, is to develop
necessary and sufficient conditions for all possible outcomes for P , such as infeasibility,
unboundedness, or optimality. In fact, it is possible to construct a comprehensive theory
of such conditions by simple manipulations of the necessary and sufficient conditions for
the feasibility of P .

Obviously, any feasible solution certifies that P is feasible. Thus, we say that x̄
satisfying (1)-(2) is a feasibility certificate for P . The following theorem provides easily
verifiable sufficient condition for P to be infeasible.

Theorem 1 (Infeasibility Certificate) If there exists z ∈ Rm such that

zᵀA ≤ 0, (3)

z ≥ 0, (4)

bᵀz > 0, (5)
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then P is infeasible.

Proof. Suppose, to the contrary, that there exist x̄ satisfying (1) and (2), and z̄
satisfying (3)-(5). Then,

0 ≥ (z̄ᵀA)x̄ = z̄ᵀAx̄ = z̄ᵀ(Ax̄) ≥ z̄ᵀb = bᵀz > 0,

leading to the conclusion that 0 > 0, a contradiction. �

If z̄ satisfies (3)-(5), we call it an infeasibility certificate for P . While it is not obvious,
it can be shown that whenever P is infeasible, there exists z satisfying (3)-(5). This
result is presented (without a proof) in the following theorem, which is known as Farkas’
Lemma.

Theorem 2 (Farkas’ Lemma) For any data1 of P exactly one the following is true:

• There exists x ∈ Rn satisfying (1) and (2).

• There exists z ∈ Rm satisfying (3)-(5).

Next, we construct a certificate for unboundedness of P . The following theorem provides
easily verifiable sufficient conditions for P to be unbounded if feasible.

Theorem 3 (Unboundedness Certificate) If there exists w ∈ Rn such that

Aw ≥ 0, (6)

w ≥ 0, (7)

cᵀw > 0, (8)

then P is unbounded if feasible.

Proof. Suppose w̄ satisfies (6)-(8), and let x̄ be a feasible solution for P (that is, x̄
satisfies (1) and (2)). Now, define x(λ) = x̄ + λw̄. We claim that for all λ ≥ 0,x(λ) is
feasible for P . The claim is verified by noting that for λ ≥ 0,

Ax(λ) = A(x̄ + λw̄) = Ax̄ + λAw̄ ≥ b + λ0 = b,

In addition, for λ ≥ 0, x(λ) = x̄ + λw̄ ≥ 0, so x(λ) satisfies (1) and (2).

However, since

cᵀx(λ) = A(x̄ + λw̄) = cᵀx̄ + λcᵀw̄ (where cᵀw̄ < 0),

P is clearly unbounded, as x(λ) is feasible for any λ ≥ 0, so λ can be made arbitrarily
large, maintaining feasibility and driving (since cᵀw̄ < 0) the objective function towards

1That is, A, b, c.
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−∞. In particular, for any given α, we can find a non-negative λ for which cᵀx(λ) ≤ α

(in fact, λ = max{0, α−c
ᵀx(λ)

cᵀw̄ } will do). �

We say that w̄ satisfying (6)-(8) is an unboundedness certificate for P . Note that for P
to be recognized as unbounded, we need both feasibility and unboundedness certificates.

Next, we introduce easily verifiable sufficient conditions for boundedness of P if fea-
sible.

Theorem 4 (Boundedness Certificate) Let x be a feasible solution for P (that is, x
satisfies (1) and (2)), and suppose y ∈ Rm satisfies

yᵀA ≤ cᵀ (Aᵀy ≤ c) (9)

y ≥ 0 (10)

then cᵀx ≥ bᵀy.

Proof. The proof follows easily by noticing that

cᵀx ≥ (yᵀA)x = ȳᵀAx̄ = yᵀ(Ax) ≥ yᵀb = bᵀy. �

This last theorem establishes that if ȳ satisfy (9) and (10), then bᵀy is a lower bound
for the objective function value of every feasible solution of P . Thus, we say that ȳ
satisfying (9) and (10) is a boundedness certificate for P . Note that for P to be recognized
as bounded, we need both feasibility and boundedness certificates.

Now that we have identified boundedness and unboundedness certificates, we need to
find out whether an appropriate certificate always exists. In particular, we obviously have
that if P is feasible than it must be either bounded or unbounded (but not both). So the
question is whether it is guaranteed that whenever a feasible P is bounded (unbounded),
a bounded (unbounded) certificate exists. In the following theorem we show (by applying
Farkas’ Lemma) that the answer is ’yes’ !

Theorem 5 For any data of P exactly one the following is true:

• There exist y satisfying (9)-(10).

• There exist w satisfying (6)-(8).

Proof. Multiplying the inequalities in (9) by -1, we obtain the following system of
inequalities, which is equivalent to (9)-(10):

−yᵀA ≥ −cᵀ (9′)

y ≥ 0 (10′)
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Similarly, by multiplying the inequalities in (6) and inequality (8) by -1, we obtain the
following system inequalities, which is equivalent to (6)-(8):

−Aw ≤ 0 (6′)

y ≥ 0 (7′)

−cᵀw < 0 (8′)

Noticing that (by renaming coefficients, variables, and summations indices) the corre-
spondence between (9’)-(10’) and (6’)-(8’) is the same as the correspondence between
(1)-(2) and (3)-(5), and invoking Farkas’ Lemma (Theorem 2), complete the proof. �

As an immediate corollary to the preceding theorem, it is clear that if we have a
feasible solution to P whose objective function value is the same as a lower bound for
P , then this solution is optimal for P . This observation leads to the following easily
verifiable sufficient conditions for optimal solution for P .

Theorem 6 (Optimality Certificate) Let x be a feasible solution for P,
y satisfies (9) and (10), and cᵀx = bᵀy. Then, x is an optimal solution for P.

Proof. Follows immediately from Theorem 4. �

Thus, given x∗ and y∗ satisfying the conditions in Theorem 6, we say that y∗ is an
optimality certificate for x∗. In addition, it can be shown that whenever x∗ is an optimal
solution for P , there exists y∗ certifying its optimality. In fact, this result is usually
presented in somewhat different form as follows (the proof, which is based on Farkas’
Lemma is omitted).

Theorem 7 Suppose P is feasible and bounded (that is, there exists x̄ satisfying (1) and
(2), and ȳ satisfying (9) and (10)), then there exist x∗ satisfying (1) and (2), and y∗

satisfying (9) and (10), such that cᵀx∗ = bᵀy∗.

Note that Theorem 7 establishs that if P is feasible and bounded, then it must have an
optimal solution.

Summarizing the discussion above we have:

• Either there exists x̄ satisfying (1) and (2) (in which case P is feasible), or there
exists z̄ satisfying (3)-(5) (in which case P is infeasible).

• Either there exists w̄ satisfying (6)-(8) (in which case P is unbounded if feasible),
or there exists ȳ satisfying (9) and (10) (in which case P is bounded if feasible).

• If P is both feasible and bounded (that is, there exist x̄ satisfying (1) and (2),
and ȳ satisfying (9) and (10)), then there exists an optimal solution x∗ to P and
a corresponding optimality certificate y∗.



IEOR 240 LP Theory 5

From the preceding we can construct the following table, displaying the status of P
for any of the four combinations of existence of the certificates discussed in the first two
bullets above.

There exists x̄ There exists z̄

satisfying (1) and (2) satisfying (3)-(5)

There exists ȳ There exists an optimal solution x∗ P is infeasible

satisfying (9) and (10) certified by some y∗

There exists w̄ P is unbounded P is infeasible
satisfying (6)-(8)

It is useful to combine Theorems 6 and 7 to obtain necessary and sufficient conditions
for optimality as follows:

Optimality Conditions I
x∗ is optimal for P if and only if there exists y∗ such that:

(a) x∗ satisfies (1) and (2),

(b) y∗ satisfies (9) and (10),

(c) cᵀx∗ = bᵀy∗.

These conditions are often expressed as follows:

Optimality Conditions II
x∗ is optimal for P if and only if there exists y∗ such that:

(a’) x∗ satisfies (1) and (2),

(b’) y∗ satisfies (9) and (10),

(c’) r∗jx
∗
j = 0 (j = 1, . . . , n), s∗iy

∗
i = 0 (i = 1, . . . ,m).

(where s∗ = Ax∗ − b and r∗ = c−Aᵀy∗)

The conditions in (c’) above are called complementary slackness conditions 2 (CSC).

2The name comes from the fact that the s∗i ’s (r∗j ’s) are the slacks of (1) ((9)) and that x∗
j ’s (y∗

i ’s)
are the slacks of (2) ((10)).
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Theorem 8 Optimality conditions I are satisfied by x∗ and y∗ if and only if they satisfy
optimality conditions II.

Proof. Obviously, conditions (a) and (b) in optimality conditions I are identical to
conditions (a’) and (b’) in optimality conditions II. Now consider

cᵀx∗ − bᵀy∗ = cᵀx∗ − (y∗)ᵀAx∗ + (y∗)ᵀAx∗ − bᵀy∗

= (cᵀ − (y∗)ᵀA)x∗ + (y∗)ᵀ(Ax∗ − b)

= rᵀx∗ + sᵀy∗ =
n∑
j=1

r∗jx
∗
j +

n∑
i=1

s∗iy
∗
i

From the above it is obvious that (c’) implies (c). On the other hand, (a) and (b) imply
that x∗j , r

∗
j (j = 1, . . . , n) and y∗i , s

∗
i (i = 1, . . . ,m) are all non-negative. Thus, (a)-(c) im-

ply (c’). �

It should be noted that the y∗i ’s and the r∗j ’s play a key role in sensitivity analysis
of linear programming, where they usually referred to as shadow prices and reduced cost
respectively.

These theoretical results are usually presented in the context of duality theory of linear
programming. The main observation is that the boundedness certificate, as defined in
(9)-(10), is a set of linear inequalities. Considering this set of inequalities as the feasibility
set in terms of the variables y, the dual LP of P is defined as3:

D : max bᵀy

s.t. Aᵀy ≤ c

y ≥ 0

Note that the constraints of the dual problem, D, are identical to (9) and (10).

The relationship between the primal and the dual problems is symmetric as is evident
from the following theorem.

Theorem 9 The dual of the dual is the primal.

Proof. First, we have to convert the dual (D) to the format of the primal (P). We’ll do
that by multiplying the objective function and the inequalities in (9) by −1, obtaining:

D : min−bᵀy
s.t. −Aᵀy ≥ −c

y ≥ 0

3It is customary to call P, the primal LP
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Taking the dual of the problem above, using v as its variables, we have:

Dual of D : max−cᵀv
s.t. −Av ≤ −b

v ≥ 0

Finally, we convert this problem by multiplying the objective function and the inequalities
corresponding to A by −1. Thus we get the dual of D can be expressed as:

Dual of D : min cᵀv

s.t. Av ≥ b

v ≥ 0

which is precisely the primal problem P . �

The major theorems of duality theory are basically reformulations of what we pre-
sented so far about the certificate, with replacing the statement “y satisfying (9) and
(10)” with the statement “y is a feasible solution for D”. In particular, we have the
following theorems.

Theorem 10 (Weak duality) Suppose x and y are feasible solutions for the primal
and the dual problems, respectively. Then, cᵀx ≥ bᵀy.

Note that the symmetry of the statement of the weak duality theorem with respect to the
primal and dual problems implies that a dual (primal) feasible solution is a boundedness
certificate to P (D).

An obvious corollary for Theorem 10 is:

Corollary 11

(a) If the dual is unbounded, then the primal is infeasible.

(b) If the primal is unbounded, then the dual is infeasible.

(c) Suppose x∗ and y∗ are feasible solutions for the primal and dual problems, respec-
tively, and cᵀx∗ = bᵀy∗. Then, x∗ and y∗ are optimal for the primal and dual
problems, respectively.

Next, we present the analog of Theorem 7.

Theorem 12 (Strong duality) Suppose P and D are feasible. Then, there exist op-
timal solutions x∗ and y∗ for P and D, respectively. In addition, for any such pair,
cᵀx∗ = bᵀy∗.
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Finally, we present the optimality conditions in terms of duality theory.

Optimality Conditions I

x∗ and y∗ are optimal for P and D, respectively, if and only if:

(a) x∗ is feasible for the primal problem P ,

(b) y∗ is feasible for the dual problem D,

(c) cᵀx∗ = bᵀy∗.

Optimality Conditions II

x∗ and y∗ are optimal for P and D, respectively, if and only if:

(a’) x∗ is feasible for the primal problem P ,

(b’) y∗ is feasible for the dual problem D,

(c’) r∗jx
∗
j = 0 (j = 1, . . . , n), s∗iy

∗
i = 0 (i = 1, . . . ,m).

(where s∗ = Ax∗ − b and r∗ = c−Aᵀy∗)

We summarize the duality theory results in the following table, displaying the status
of P and D for any of the nine combinations of LP outcomes (existence of optimal
solution, unboundedness, infeasibility) for both primal and dual.

Primal feas. Primal unbd. Primal infea.

Dual feas. Exist primal and dual Impossible Impossible
optimal solutions
with same o.f.v

Dual unbd. Impossible Impossible possible

Dual infeas. Impossible Possible Possible

Where the possibility of both the primal and dual problems to be infeasible is estab-
lished by the following simple (one variable) example:

P : min−x s.t. 0.x ≥ 1, x ≥ 0; D : max y s.t. 0.y ≤ −1, y ≥ 0.


