
AMPL Tutorial

IEOR 240 - Fall 2021

Linear Programming

 - decision variables,

 - problem data

min(max) ​ c ​x ​∑i=1
n

i i

s.t. ​ a ​x ​ ​ b ​∑i=1
n

1i i (
≤
=
≥

) 1

 ​ a ​x ​ ​ b ​∑i=1
n

2i i (
≤
=
≥

) 2

 ⋮

 ​ a ​x ​ ​ b ​∑i=1
n

mi i (
≤
=
≥

) m

x ​i

a ​,ji c ​,i b ​j

Installation Instructions
1. Download AMPL

MacOS: http://ampl.com/demo/amplide.macosx64.tgz

Windows: http://ampl.com/demo/amplide.mswin64.zip
Linux: http://ampl.com/demo/amplide.linux64.tgz

2. Extract the archive.
3. In the amplide folder, you should find the amplide application.

4. Open the amplide application.
5. Type into the console: printf "Hello World!\n";
6. Press Enter.
7. If it prints Hello World! , then you are done!

http://ampl.com/demo/amplide.macosx64.tgz
http://ampl.com/demo/amplide.mswin64.zip
http://ampl.com/demo/amplide.linux64.tgz

Special Instrustion for Mac OSX
Special note for users of macOS 10.12 Sierra: As a side-effect of a new security feature
introduced with this version, you may see an error message beginning The IDE cannot
find the AMPL executable... To fix this problem, quit the IDE application and then
follow these steps:

(1) In your amplide.macosx64 folder, find the Amplide file (with a cat's head icon).

(2) Drag the Amplide file to your desktop.

(3) Drag the Amplide file back into the amplide.macosx64 folder.

(4) Then double-click the file icon to start the AMPL IDE again.

AMPL IDE

Modelling: Berkeley Paint Company
Berkeley Paint Company makes two colors of paint: Blue and Gold

The type of paints have the following characteristics (per gallon):

Paint Blue Gold

Profit () 10 15

Production/hour () 40 30

Maximum demand () 1000 860

Berkeley Paint Company has 40 hours of production capacity available to produce paint.

Formulate an LP to help Berkeley Paint Company maximize profit.

p ​i

r ​i

u ​i

Model
 = Amount of Blue paint to produce

 = Amount of Gold paint to produce

x ​1

x ​2

max 10x ​ +1 15x ​2

s.t. (1/40)x ​ +1 (1/30)x ​ ≤2 40
 x ​ ≤1 1000
 x ​ ≤2 860
 x ​ ≥1 0
 x ​ ≥2 0

Formulating the model in AMPL
variables

var PaintB;

var PaintG;

objective function

maximize totalProfit: 10 * PaintB + 15 * PaintG;

constraints

subject to time: (1/40)*PaintB + (1/30)*PaintG <= 40;

subject to blue_limit: 0 <= PaintB <= 1000;

subject to gold_limit: 0 <= PaintG <= 860;

Another way to write it
variables

var PaintB >= 0;

var PaintG >= 0;

objective function

maximize totalProfit: 10 * PaintB + 15 * PaintG;

constraints

subject to time: (1/40)*PaintB + (1/30)*PaintG <= 40;

subject to blue_limit: PaintB <= 1000;
subject to gold_limit: PaintG <= 860;

Save as paint.mod

Comments on Syntax
starts a comment
All lines of code end with a ;

Variables are declared with var
The objective function has the following format:

maximize <name>: <objective>; or

minimize <name>: <objective>;

The constraints have the following format:

subject to <name>: <constraint>;

Names must be unique.

Also, a variable and constraint cannot have the same name.

AMPL is case sensitive. Keywords must be lower case.

Setup AMPL
Type the following commands into the console:

1. Set the solver to be CPLEX:

option solver cplex;

There are many solvers included with AMPL but we will mostly use CPLEX

Time to solve!
Type the following commands into the console:

1. Load the model:

model paint.mod;

2. Solve!

solve;

3. Output:

CPLEX 12.7.0.0: optimal solution; objective 17433.33333

0 simplex iterations (0 in phase I)

What is the solution?
Display the objective function, constraint or variable:

display <name>;

For example:

display totalProfit;

Display all variables:

display _varname, _var;

Reset AMPL
reset;

Modelling: Berkeley Paint Company
Berkeley Paint Company makes two colors of paint: Blue and Gold

The type of paints have the following characteristics (per gallon):

Paint Blue Gold

Profit () 10 15

Production/hour () 40 30

Maximum demand () 1000 860

Berkeley Paint Company has 40 hours of production capacity available to produce paint.

Formulate a symbolic LP to help Berkeley Paint Company maximize profit.

p ​i

r ​i

u ​i

Symbolic model
 = number of paints to produce

 = Amount of paint to produce

 for

Or equivalently:

 for

n

x ​i i

max p ​x ​ +1 1 p ​x ​ +2 2 p ​x ​ +3 3 ...p ​x ​n n

s.t. ​x ​ +
r ​1

1
1 ​x ​ +

r ​2

1
2 ​x ​ +

r ​3

1
3 ... + ​x ​ ≤

r ​n

1
n t

 0 ≤ x ​ ≤i u ​i i = 1 ... n

max ​ p ​x ​∑i=1
n

i i

s.t. ​ ​x ​ ≤∑i=1
n

r ​i

1
i t

 0 ≤ x ​ ≤i u ​i i = 1 ... n

Writing a symbolic model in AMPL
parameters

param n;

param capacity;

param profit{i in 1..n};

param r{i in 1..n};

param maxDemand{i in 1..n};

variables

var paint{i in 1..n} >= 0;

objective function

maximize totalProfit:

 sum{i in 1..n} profit[i]*paint[i];

constraints

subject to time:

 sum{i in 1..n} (1 / r[i]) * paint[i] <= capacity;

subject to demand_limit {i in 1..n}:

 paint[i] <= maxDemand[i];

Save as paintSymbolic.mod

Syntax comments
Use more elaborate names than in your LP.
param is used to define a parameter.

We define an indexed variable / parameter with:
<name>{<index> in <range>}

Typical indices are: i,j,k

Range: 1..n TWO dots!
Use <name>[2] to access the second index.
Summation are defined similarly:

sum{<index> in <range>}

Indexed constraints are defined with:

subject to <name> {<index> in <range>}:

What is missing? Data!

Specifying data in AMPL
param n := 2;

param capacity := 40;

param profit :=

	 1 10

	 2 15;

param r :=

	 1 40

	 2 30;

param maxDemand :=

	 1 1000

	 2 860;

Save as paintSymbolic.dat

Syntax comments:
Defining the value of a simple parameter:

param <name> := <value>;

Defining the value of an indexed parameter:

param <name> :=

 <index> <value>

 ...

 <index> <value>;

Parameters with multiple indices:
Definition: <name>{<ind1> in <range1>, <ind2> in <range2>}
Accessing an index: <name>[<index1>,<index2>]
Example definition:

var paint{i in 1..m, j in 1..n} >= 0;

Example constraint:

subject to demandConstraint {j in 1..n}:

 sum{i in 1..m} paint[i,j] = demand[j];

Data with multiple indices:

param <name> :=

 <index1> <index2> <value>

 ...

 <index1> <index2> <value>;

Solving a symbolic model
Load model:

model paint.mod;

Load data:

data paintSymbolic.dat;

Solve: solve;

Setup AMPL - Sensitivity Analysis
Type the following commands into the console:

1. Set the solver to be CPLEX:

option solver cplex;

2. Enable sensitivity analysis:

option cplex_options 'sensitivity';

3. Turn off presolve (needed for sensitivity analysis):

option presolve 0;

4. Load model and solve as usual.

model paint.mod;

solve;

Sensitivity Analysis Outputs
Display the objective function, constraint or variable:

display <name>;

For example:

display totalProfit;

Display all variables:

display _varname, _var, _var.rc, _var.down, _var.current, _var.up;

Display all constraints:

display _conname, _con, _con.slack, _con.up, _con.current, _con.down;

