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Simplex-method

Idea: certificate of optimality, expanded

(Primal) feasibility

Ax ≥ b,

x ≥ 0.

Boundedness (aka Dual
feasibility)

yTA ≤ c,

y ≥ 0.

Tightness:

c⊤x = y⊤b

Tightness can be replaced with the
Complementary Slackness Condition

[c⊤ − y⊤A]ixi = 0 for all i ∈ {1 . . . n} (a)

[Ax − b]jyj = 0 for all j ∈ {1 . . .m} (b)

Fact: The optimum can be achieved only in
an extreme feasible point. (This is a
general fact for any concave objective)
Idea behind Simplex Method: Walk on
(x , y) of the form (feasible extreme point,
dual point) satisfying complementary
slackness, looking for y that satisfies dual
feasibility
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Simplex-method

Example

min −x1 −2x2
s.t. −x1 −x2 ≥ −4

−x1 +2x2 ≥ −2
2x1 −x2 ≥ −2
x1 ≥ 0

x2 ≥ 0
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Simplex-method

Finding a basic solution
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Simplex-method

Finding a basic solution

Can use Gauss-Jordan method to calculate the inverse
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Reminder: linearization of MinMax

General linearization of MaxMin (or MinMax)

Similarly, for g(y , x) increasing with y ,

min
x∈X

g(max{f1(x), . . . , fm(x)}, x)

is equivalent (in some sense) to

min
x∈X

g(z , x)

s.t. z ≥ fi (x) ∀i ∈ {1, . . . ,m}

Note also that
max f (x) = −min(−f (x))
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Reminder: linearization of MinMax

Example

Suppose we have the problem:

min
x1,x2

|x1 + 5x2|

s.t. x1 − 3x2 ≥ 2

x1 ≥ 0

How can we convert it into a Linear Program?
Remember |x | = max{x ,−x}.

min
x1,x2

max{x1 + 5x2,−x1 − 5x2}

s.t. x1 − 3x2 ≥ 2

x1 ≥ 0
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Reminder: linearization of MinMax

Form 1

Create a new variable z and make:

min
x1,x2,z

z

s.t. z ≥ x1 + 5x2

z ≥ −(x1 + 5x2)

x1 − 3x2 ≥ 2

x1 ≥ 0
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Sensitivity analysis

Terminology

▶ Shadow price yi = Dual variable
Change of the objective function from one unit increase in its
right-hand side bi

▶ Reduced cost rj = Dual slack = (c⊤ − y⊤A)j
Amount by which the cost coefficient of non-basic variable cj
must be lowered for that variable to become basic

▶ Allowable increase/decrease
▶ Optimal solution x∗ and objective

∑n
j=1 cjx

∗
j may change

▶ Whether a decision variable is basic or non-basic stays
unchanged

▶ Whether a constraint is binding or non-binding stays
unchanged
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Sensitivity analysis

Terminology

For a problem in symmetrical form, let (x̄, ȳ) be primal-dual
feasible point satisfying complementary slackness. Let s̄ be
corresponding primal slack and r̄ be corresponding dual slack.

▶ Decision variable x̄j is basic if x̄j ̸= 0 (r̄j = 0 due to CS)

▶ Decision variable x̄j is non-basic if x̄j = 0 (r̄j < 0 in general)

▶ Constraint
∑n

j=1 aijxj ≥ bi is binding if
∑n

j=1 aij x̄j = bi
(s̄i = 0)

▶ Constraint
∑n

j=1 aijxj ≥ bi is not binding if
∑n

j=1 aij x̄j > bi
(ȳi = 0 due to CS)
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Sensitivity analysis

Example: continuous knapsack
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Sensitivity analysis

AMPL notation

▶ x – primal variable;

▶ x.rc – reduced cost or dual slack;

▶ x.current – objective coefficients (ci );

▶ conname – shadow price or dual variable;

▶ con.slack – primal slack;

▶ con.current – right hand side (bj);

▶ ...down and ...up are the minimal and the maximal value
of the corresponding parameter ci or bj such that the problem
stays within the allowable increase/decrease range
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Sensitivity analysis

How to derive sensitivity analysis: Key Idea

In order for a change to be withing the allowable range, both of
these must be true at the solution point:

▶ Whether a decision variable is basic or non-basic stays
unchanged.

▶ Whether a constraint is binding or non-binding stays
unchanged.
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Sensitivity analysis

Types of analysis

▶ Case 1: Change bi
▶ Case 1a: Change bi of non-binding constraint
▶ Case 1b: Change bi of binding constraint
▶ Case 1c: Find g if Case 1b.

▶ Case 2: Change cj
▶ Case 2a: Change cj of non-basic variable
▶ Case 2b: Change cj of basic variable

▶ Case 3: Change aij
▶ Case 3a: Change aij of non-basic variable
▶ Case 3b: Change aij of basic variable

▶ Case 4: Add a new constraint

▶ Case 5: Add a new decision variable
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Sensitivity analysis

Case 2a: Change cj of non-basic variable

Change cj of non-basic variable

▶ Reduced cost rj ̸= 0 1

rj = cj −
m∑
i=1

aijyi

▶ Consider c3 which has reduced cost r3 = −0.4
▶ Allowable increase: −rj = 0.4
▶ Allowable decrease: +∞

▶ Consider changing c3 from 2 to 2.1
▶ New optimal solution: Unchanged
▶ New optimal objective value: Unchanged

▶ It’s possible to change several cj for non-basics variables at
the same time!

1rj = 0 for non-basic variable means multiple optimal solutions
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Sensitivity analysis

Case 2b: Change cj of basic variable

Change cj of basic variable

max 24x1 +(5 + δ)x2 +2x3 +3x4
s.t. 3x1 +8x2 +14x3 +6x4 ≤ 60

20x1 +10x2 +2x3 +15x4 ≤ 100
x2 ≥ 5

x1 ≥ 0
x2 ≥ 0

x3 ≥ 0
x4 ≥ 0
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Sensitivity analysis

Case 2b: Change cj of basic variable

Consider the Dual problem:

min 60y1 +100y2 +5y3
s.t. 3y1 +20y2 ≥ 24 (1)

8y1 +10y2 +y3 ≥ 5 + δ (2)
14y1 +2y2 ≥ 2 (3)
6y1 +15y2 ≥ 3 (4)
y1 ≥ 0 (5)

y2 ≥ 0 (6)
y3 ≤ 0 (7)

Optimal solution y1 = 0, y2 = 1.2, y3 = −7
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Sensitivity analysis

Case 2b: Change cj of basic variable

min +100y2 +5y3
s.t. +20y2 = 24 (1)

+10y2 +y3 = 5 + δ (2)
+2y2 ≥ 2 (3)
+15y2 ≥ 3 (4)

y2 ≥ 0 (6)
y3 ≤ 0 (7)
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Sensitivity analysis

Case 2b: Change cj of basic variable

From (1) we get y2 =
24
20 (satisfies (3), (4), (6)), substitute in (2)

y3 = −7 + δ.

From (7)
δ ≤ 7
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Sensitivity analysis

Case 2b: Change cj of basic variable

Change cj of basic variable

▶ Reduced cost rj = 0
▶ Consider c2

▶ Allowable increase: 7
▶ Allowable decrease: +∞

▶ Consider changing c2 from 5 → 10
▶ New optimal solution: Unchanged
▶ New optimal objective value:

n∑
j=1

cnewj x∗j =
n∑

j=1

cjx
∗
j + δx∗2 = 110
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Sensitivity analysis

Case 4: Add a new constraint

Add a new constraint
▶ If current solution satisfies the new constraint

▶ New optimal solution: Unchanged
▶ New optimal objective value: Unchanged

▶ If current solution does not satisfy the new constraint
▶ Dual simplex method (but don’t worry about this for now)

Note: the problem might become infeasible
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Sensitivity analysis

Note

Sensitivity analysis lets you simultaniously think about a continious
set of instances of LP for which δ is within the range. The other
instances still have to be considered individually.
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Farkas Lemma: Geometrical picture

Farkas Lemma formulation (for Standard form)

Standard form LP:

min cTx

s.t. Ax = b,

x ≥ 0.

Feasibility certificate:

Ax = b,

x ≥ 0.

Infeasibility certificate:

yTb > 0

yTA ≤ 0.

Farkas Lemma: Exactly one out of two
exists: x or y
(Equivalent to Theorem 2 of alternatives
from LPMATH)
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Farkas Lemma: Geometrical picture

Reminder from Linear Algebra

Consider a1, . . . , an ∈ Rm, y ∈ Rm and x ∈ Rn. The matrix
[a1 . . . an] = A ∈ Rm×n

▶ Columns of the matrix in multiplication on the left:

y⊤A = y⊤[a1 . . . an] = [y⊤a1 . . . y⊤an]

▶ Columns of the matrix in multiplication on the right:

Ax = [a1 . . . an]

 x1
...
xn

 = x1a1 + . . .+ xnan =
n∑

j=1

xjaj
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Farkas Lemma: Geometrical picture

Conic combination of vectors

For a1, . . . , am ∈ Rn, a linear combination is a vector v ∈ Rn that
can be represented as

v =
m∑
i=1

wiai or v = v⊤A

for some w1, . . . ,wm ∈ R

A conic combination is a vector v ∈ Rn

that can be represented as

v =
m∑
i=1

wiai or v = v⊤A

for some w1, . . . ,wm ≥ 0
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Farkas Lemma: Geometrical picture

Conic combination of vectors

As the set of all linear combinations produces a linear span, the set
of all conic combinations produces a cone.
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Farkas Lemma: Geometrical picture

Geometric interpretation

Standard form LP:

min cTx

s.t. Ax = b,

x ≥ 0.

Feasibility certificate:

Ax = b,

x ≥ 0.

Infeasibility certificate:

yTb > 0

yTA ≤ 0.
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Farkas Lemma: Geometrical picture

Thank you for your attention !
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