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Problem 1
Local or global Lipschitz condition. Consider the pendulum equation with friction and constant input
torque:

ẋ1 = x2ẋ2 = −g

l
sinx1 −

k

m
x2 +

T

ml2
,

where x1 is the angle that the pendulum makes with the vertical, x2 is the angular rate of change, m is the
mass of the bob, l is the length of the pendulum, k is the friction coefficient, and T is a constant torque.
Let Br = {x ∈ R2 : ∥x∥ < r}. For this system (represented as ẋ = f(x)) find whether f is locally Lipschitz
in x on Br for sufficiently small r, locally Lipschitz in x on Br for any finite r, or globally Lipschitz in x
(i.e. Lipschitz for all x ∈ R2).

Problem 2
Existence and uniqueness of solutions to differential equations. Consider the following two systems
of differential equations:

ẋ1 = −x1 + et cos(x1 − x2)ẋ2 = −x2 + 15 sin(x1 − x2)

and

ẋ1 = −x1 + x1x2ẋ2 = −x2

1. Do they satisfy a global Lipschitz condition?

2. For the second system, your friend asserts that the solutions are uniquely defined for all possible initial
conditions, and they all tend to zero for all initial conditions. Do you agree or disagree?

Problem 3
Perturbed nonlinear systems. Suppose that some physical system obeys the differential equation

ẋ = p(x, t), x(t0) = x0,∀t ≥ t0,

where p(·, ·) obeys the conditions of the fundamental theorem. Suppose that as a result of some perturbation
the equation becomes

ż = p(x, t) + f(t), z(t0) = x0 + δx0,∀t ≥ t0

Given that for t ∈ [t0, t0 + T ], ∥f(t)∥ ≤ ε1 and ∥δx0∥ ≤ ε0, find a bound on ∥x(t) − z(t)∥ valid for
t ∈ [t0, t0 + T ].
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Problem 4
Dynamical systems, time invariance. Suppose that the output of a system is represented by

y(t) =

∫ t

−∞
e−(t−τ)u(τ)dτ

Is the system time invariant? You may select the input space U to be the set of bounded, piecewise
continuous, real-valued functions defined on (−∞,∞).

Problem 5
Solution of a matrix differential equation. Let A1(·), A2(·) and F (·), be known piecewise continuous
n × n matrix-valued functions. Let Φi be the transition matrix of ẋ = Ai(t)x for i = 1, 2. Show that the
solution of the matrix differential equation:

Ẋ(t) = A1(t)X(t) +X(t)AT
2 (t) + F (t), X(t0) = X0

is

X(t) = Φ1(t, t0)X0Φ
T
2 (t, t0) +

∫ t

t0

Φ1(t, τ)F (τ)ΦT
2 (t, τ)dτ

Problem 6
Satellite Problem, linearization, state space model. Model the earth and a satellite as particles. The
normalized equations of motion, in an earth-fixed inertial frame, simplified to 2 dimensions (from Lagrange’s
equations of motion, the Lagrangian L = T − V = 1

2 ṙ
2 + 1

2r
2θ̇2 − k

r ):

r̈ = rθ̇2 − k

r2
+ u1

θ̈ = −2
θ̇

r
ṙ +

1

r
u2

with u1, u2 representing the radial and tangential forces due to thrusters. The reference orbit with u1 =
u2 = 0 is circular with r(t) ≡ p and θ(t) = ωt. From the first equation, it follows that p3ω2 = k. Obtain the
linearized equation describing this orbit.

Problem 7
State Transition Matrix, calculations. Calculate the state transition matrix for ẋ(t) = A(t)x(t), with
the following A(t) :

1. A(t) =

[
−1 0
2 −3

]
2. A(t) =

[
−2t 0
1 −1

]
3. A(t) =

[
0 ω(t)

−ω(t) 0

]
4. For systems 1. and 2. above, describe the zero input (non-zero initial state) response.

Hint: for part 3. above, let Ω(t) =
∫ t

0
ω(t′)dt′; and consider the matrix[

cosΩ(t) sinΩ(t)
− sinΩ(t) cosΩ(t)

]
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Problem 8
Sampled Data System. You are given a linear, time-invariant system

ẋ = Ax+Bu

which is sampled every T seconds. Denote x(kT ) by x(k). Further, the input u is held constant between
kT and (k+1)T, that is, u(t) = u(k) for t ∈ [kT, (k+1)T ]. Derive the exact state equation for the sampled
data system, that is, give a formula for x(k + 1) in terms of x(k) and u(k).

Problem 9
Discrete-time LQR. Consider the following optimal control problem where we are interested in controlling
the output instead of state:

min
U

N−1∑
τ=0

(yTτ Qyτ + uT
τ Ruτ )

subject to

xt+1 = Axt +But, t ∈ {0, 1, . . . , N − 1}
yt = Cxt

x0 = xinit

Here, U is the sequence of control inputs. Find an LQR-like sequence of matrix updates that computes the
optimal cost-to-go at all times and the optimal feedback controller at all times.

Problem 10
Discrete-time LQR. In the above problem, suppose the system matrices are given by:

A =

[
1 1
0 1

]
, B =

[
0
1

]
, C =

[
1 0

]
,

and the cost matrices are given by Q = Qf = ρQI and R = ρRI. Let x0 = (1, 0) and N = 20. Explain how
the output, control and cost-to-go change under the optimal feedback when

1. ρQ = 1, ρR = 1,

2. ρQ = 103, ρR = 1,

3. ρQ = 1, ρR = 103.

You can use MATLAB, python, or any other tools you like to solve the problem.

Problem 11
Discrete-time LQR. Suppose that we would like the system to track a reference state trajectory. Derive
the optimal LQR control policy and the cost-to-go function for the reference trajectory problem for LTI
systems when the reference trajectory (x∗, u∗) is not dynamically feasible, meaning that: x∗

t+1 ̸= f(x∗
t , u

∗
t ).
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Problem 12
Continuous-time LQR, infinite horizon. Consider the system described by the equations ẋ = Ax +
Bu, y = Cx, where

A =

[
0 1
0 0

]
, B =

[
0
1

]
, C =

[
1 0

]
1. Determine the optimal control u∗(t) = F ∗x(t), t > 0 which minimizes the performance index

J =

∫ ∞

0

(y2(t) + ρu2(t))dt

where ρ is positive and real.

2. Observe how the eigenvalues of the dynamic matrix of the resulting closed loop system change as a
function of ρ. Can you comment on the results?
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