EE650 Linear System Theory Problem Set 4

Issued 6 Nov 2023; Due 8 Dec 2023 14:00 HST

Problem 1

Adjoint of Observability Map. Given the observability map $\mathcal{L}_{O}: \mathbb{R}^{n} \rightarrow \mathcal{Y}_{\left[t_{0}, t_{1}\right]}$ where $\mathcal{L}_{O}\left(x_{0}\right)=$ $C(\cdot) \Phi\left(\cdot, t_{0}\right) x_{0}$, derive its adjoint map \mathcal{L}_{O}^{*}.

Problem 2

Controllability over time intervals. Given a linear time varying system $R(\cdot)=[A(\cdot), B(\cdot), C(\cdot), D(\cdot)]$, show that if $R(\cdot)$ is completely controllable on $\left[t_{0}, t_{1}\right]$ then $R(\cdot)$ is completely controllable on any $\left[t_{0}^{\prime}, t_{1}^{\prime}\right]$, where $t_{0}^{\prime} \leq t_{0}<t_{1} \leq t_{1}^{\prime}$. Show that this is no longer true when the interval $\left[t_{0}, t_{1}\right]$ is not a subset of $\left[t_{0}^{\prime}, t_{1}^{\prime}\right]$.

Problem 3

Controllability, characteristic and minimal polynomials. Consider an LTI system (A, B, C) with $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times n_{i}}, C \in \mathbb{R}^{n_{o} \times n}$. You are told that the characteristic polynomial of A is $\left(s-\lambda_{1}\right)^{d_{1}}(s-$ $\left.\lambda_{2}\right)^{d_{2}} \cdots\left(s-\lambda_{k}\right)^{d_{k}}$ and the minimal polynomial is $\left(s-\lambda_{1}\right)^{m_{1}}\left(s-\lambda_{2}\right)^{m_{2}} \cdots\left(s-\lambda_{k}\right)^{m_{k}}$. The ordering of the λ_{i} is chosen to be such that $m_{1} \leq m_{2} \leq \ldots \leq m_{k}$. Compute the minimum number of inputs required (that is the minimum size of n_{i}) so as to make the pair (A, B) completely controllable. Similarly, compute the minimum value of n_{o} to make the pair (A, C) completely observable.

Problem 4

Observability Tests for LTI Systems. Consider the following theorem:
Theorem 1 Consider an LTI system (A, B, C) with $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times n_{i}}, C \in \mathbb{R}^{n_{o} \times n}$. The following statements are equivalent:

1. The LTI system represented by (A, C) is completely observable on some $[0, \Delta]$
2. $\operatorname{rank}\left[\begin{array}{c}C \\ C A \\ \vdots \\ C A^{n-1}\end{array}\right]=n$
3. $\operatorname{rank}\left[\begin{array}{c}s I-A \\ C\end{array}\right]=n, \forall s \in \sigma(A)$

Prove the following 4 directions:

- $1 . \Rightarrow 2$.
- $2 . \Rightarrow 1$.
- $2 . \Rightarrow 3$.
- $3 . \Rightarrow 2$.

Hint: One way to prove these is to consider the matrices $\left(A^{T}, C^{T}\right)$ and follow the controllability results directly

Problem 5

A prequel question to controller design. Consider the linear time invariant system with state equation:

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-\alpha_{3} & -\alpha_{2} & -\alpha_{1}
\end{array}\right]\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] u
$$

Insert state feedback: the input to the overall closed loop system is v and $u=v-k^{T} x$ where k is a constant row vector. Show that given any polynomial $p(s)=\sum_{k=0}^{3} b_{k} s^{3-k}$ with $b_{0}=1$, there is a row vector k such that the closed loop system has $p(s)$ as its characteristic equation. (This naturally extends to n dimensions and implies that any system with a representation that can be put into the form above, called Controllable Canonical Form, can be stabilized by state feedback.)

Problem 6

State vs. Output Feedback. Consider a dynamical system described by:

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x
\end{aligned}
$$

where

$$
A=\left[\begin{array}{cc}
0 & 1 \\
7 & -4
\end{array}\right], B=\left[\begin{array}{l}
1 \\
2
\end{array}\right], C=\left[\begin{array}{ll}
1 & 3
\end{array}\right]
$$

For each of cases below, derive a state space representation of the resulting closed loop system, and determine the characteristic equation of the resulting closed loop "A" matrix (called the closed loop characteristic equation):

1. $u=-\left[f_{1} f_{2}\right] x$
2. $u=-k y$ (here $k \in \mathbb{R})$

Problem 7

Feedback control design by eigenvalue placement. Consider the dynamic system:

$$
\frac{d^{4} \theta}{d t^{4}}+\alpha_{1} \frac{d^{3} \theta}{d t^{3}}+\alpha_{2} \frac{d^{2} \theta}{d t^{2}}+\alpha_{3} \frac{d \theta}{d t}+\alpha_{4} \theta=u
$$

where u represents an input force, α_{i} are real scalars. Assuming that $\frac{d^{3} \theta}{d t^{3}}, \frac{d^{2} \theta}{d t^{2}}, \frac{d \theta}{d t}$ and θ can all be measured, design a state feedback control scheme which places the closed-loop eigenvalues at $s_{1}=-1, s_{2}=-1$, $s_{3}=-1+j 1, s_{4}=-1-j 1$.

Figure 1: Simple model of a DC Servo system

Problem 8

Observer design. Figure shows a block diagram representation of a simple model of a DC servo system: x_{1} is a voltage signal proportional to the output angular velocity x_{2}.

1. Design a full order observer, with observer gain matrix T given by

$$
T=\left[\begin{array}{l}
T_{1} \\
T_{2}
\end{array}\right]
$$

for x_{1} and x_{2} so that the characteristic polynomial associated with the error dynamics is given by:

$$
\Delta_{e}(s)=s^{2}+2 \zeta_{e} \omega_{e} s+\omega_{e}^{2}
$$

("Design" means to write down the equations for the observer, with expressions for gains T_{1} and T_{2}.)
2. Now, the observer is a system with inputs u and x_{1}, and outputs \hat{z}_{1} and \hat{z}_{2}. Thus, there are four possible transfer functions between inputs and outputs - these may be included as elements in a 2×2 matrix. Evaluate the followint matrix of transfer functions $M(s)$ between the inputs to the observer u and x_{1}, and its outputs \hat{z}_{1} and \hat{z}_{2} :

$$
M(s)=\left[\begin{array}{ll}
\hat{z}_{1}(s) / u(s) & \hat{z}_{1}(s) / x_{1}(s) \\
\hat{z}_{2}(s) / u(s) & \hat{z}_{2}(s) / x_{1}(s)
\end{array}\right]
$$

as a function of gains T_{1} and T_{2}, as well as system parameters a_{1} and a_{2}.
3. Now determine $M(s)$ as $T_{2} \rightarrow \infty$. Discuss the meaning of the result.

Problem 9

Figure 2: Simple robotic arm
Control of a Flexible Robot Arm. A simplified model for the control of a flexible robotic arm is shown in Figure. Here, k is a spring constant which models the flexibility of the arm, M represents the
mass of the arm, y, the output, is the mass position, and u, the input, is the position of the end of the spring. Here, $k / M=900 \mathrm{rad} / \mathrm{s}^{2}$.

The equations of motion for this system are thus given by $M \ddot{y}+k(y-u)=0$. Define state variables $x_{1}=y, x_{2}=\dot{y}$.

1. Write the equations of motion in state space form. Where are the open loop eigenvalues?
2. Design a full state observer with observer eigenvalues at $s=-100 \pm 100 j$.
3. Could both state-variables of the system be estimated if only a measurement of \dot{y} were available?
4. Design a state feedback controller with gain matrix F giving the closed loop system roots at $s=$ $-20 \pm 20 j$.
5. Would it be reasonable to design a control law for the system with roots at $s=-200 \pm 200 j$? Explain why or why not.
