EE650 Linear System Theory
Problem Set 4
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Problem 1

Adjoint of Observability Map. Given the observability map Lo : R™ — Yy, 4,1 where Lo(zg) =
C(-)®(-,to)xo, derive its adjoint map L.

Problem 2

Controllability over time intervals. Given a linear time varying system R(-) = [A(-), B(-),C(:), D(-)],
show that if R(-) is completely controllable on [tg, 1] then R(-) is completely controllable on any [t[, ],
where 1, < tg < t1 < t}. Show that this is no longer true when the interval [to, 1] is not a subset of [t(, t}].

Problem 3

Controllability, characteristic and minimal polynomials. Consider an LTT system (A, B,C) with
A € R™" B ¢ R™ " (' € R"™*", You are told that the characteristic polynomial of A is (s — A;)% (s —
A2)42 - (s — Ap)% and the minimal polynomial is (s — A1) (s — A2)™2 - -+ (s — A\ )™*. The ordering of the
A; is chosen to be such that m; < mg < ... < my. Compute the minimum number of inputs required (that
is the minimum size of n;) so as to make the pair (A, B) completely controllable. Similarly, compute the
minimum value of n, to make the pair (A, C') completely observable.

Problem 4

Observability Tests for LTI Systems. Consider the following theorem:

Theorem 1 Consider an LTI system (A, B,C) with A € R"*" B € R"*"i (' & R"™*™. The following
statements are equivalent:

1. The LTI system represented by (A, C) is completely observable on some [0, A]

C
CA
2. rank . =n
i CAnfl
3. rank 815 A n,Vs € o(A)

Prove the following 4 directions:
o .= 2.

o 2. = 1.



* 2. = 3.
e 3. = 2.

Hint: One way to prove these is to consider the matrices (AT, CT) and follow the controllability results
directly

Problem 5

A prequel question to controller design. Consider the linear time invariant system with state equation:

Iy 0 1 0 1 0
To | = 0 0 1 o |+ | 0 [u
j?g —Q3 —Q9 — Q] j?g 1

Insert state feedback: the input to the overall closed loop system is v and u = v — kT where k is a
constant row vector. Show that given any polynomial p(s) = Zi:o bes3™F with by = 1, there is a row
vector k such that the closed loop system has p(s) as its characteristic equation. (This naturally extends
to n dimensions and implies that any system with a representation that can be put into the form above,
called Controllable Canonical Form, can be stabilized by state feedback.)

Problem 6

State vs. Output Feedback. Consider a dynamical system described by:
i =Ax + Bu
y=Czx

where
0 1 1
A{7 _4],3{2},0[1 3]

For each of cases below, derive a state space representation of the resulting closed loop system, and deter-
mine the characteristic equation of the resulting closed loop "A" matrix (called the closed loop characteristic
equation):

Lou=—[f1 fo]z
2. uw = —ky (here k € R)

Problem 7

Feedback control design by eigenvalue placement. Consider the dynamic system:

d*o a3 d?o
— + (651 % + [65)

do
pm +a3— +asf0=u

dr? dt

where u represents an input force, «; are real scalars. Assuming that %, %, % and 6 can all be measured,
design a state feedback control scheme which places the closed-loop eigenvalues at s; = —1, so = —1,
s3=—1+4l, s4=—1—jl.
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Figure 1: Simple model of a DC Servo system

Problem 8

Observer design. Figure shows a block diagram representation of a simple model of a DC servo system:

1 is a voltage signal proportional to the output angular velocity x».

1. Design a full order observer, with observer gain matrix T given by

|

for z; and z9 so that the characteristic polynomial associated with the error dynamics is given by:

T
1>

Ao(s) = 8% 4+ 2(owes + w?

("Design" means to write down the equations for the observer, with expressions for gains 77 and T5.)

2. Now, the observer is a system with inputs u and x7, and outputs Z; and Z5. Thus, there are four
possible transfer functions between inputs and outputs - these may be included as elements in a 2 x 2
matrix. Evaluate the followint matriz of transfer functions M (s) between the inputs to the observer

u and x1, and its outputs Z; and 25 :

T 2a(s)/u(s)
M) =1 5 (s) u(s)

21(s)/z1(s)
Z2(s)/x1(s)

as a function of gains T} and T3, as well as system parameters a; and as.

3. Now determine M (s) as T — oo. Discuss the meaning of the result.

Problem 9
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Figure 2: Simple robotic arm

Control of a Flexible Robot Arm. A simplified model for the control of a flexible robotic arm is
shown in Figure . Here, k is a spring constant which models the flexibility of the arm, M represents the



mass of the arm, y, the output, is the mass position, and u, the input, is the position of the end of the

spring. Here, k/M = 900 rad/s.
The equations of motion for this system are thus given by M4 + k(y — u) = 0. Define state variables

T1 =Y, T2 =Y.

1.
2.
3.

Write the equations of motion in state space form. Where are the open loop eigenvalues?
Design a full state observer with observer eigenvalues at s = —100 % 100;.
Could both state-variables of the system be estimated if only a measurement of ¢ were available?

Design a state feedback controller with gain matrix F' giving the closed loop system roots at s =
—20 + 20j.

Would it be reasonable to design a control law for the system with roots at s = —200 £ 20057 Explain
why or why not.



