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Problem 1
Adjoint of Observability Map. Given the observability map LO : Rn → Y[t0,t1] where LO(x0) =
C(·)Φ(·, t0)x0, derive its adjoint map L∗

O.

Problem 2
Controllability over time intervals. Given a linear time varying system R(·) = [A(·), B(·), C(·), D(·)],
show that if R(·) is completely controllable on [t0, t1] then R(·) is completely controllable on any [t′0, t

′
1],

where t′0 ≤ t0 < t1 ≤ t′1. Show that this is no longer true when the interval [t0, t1] is not a subset of [t′0, t′1].

Problem 3
Controllability, characteristic and minimal polynomials. Consider an LTI system (A,B,C) with
A ∈ Rn×n, B ∈ Rn×ni , C ∈ Rno×n. You are told that the characteristic polynomial of A is (s − λ1)

d1(s −
λ2)

d2 · · · (s− λk)
dk and the minimal polynomial is (s− λ1)

m1(s− λ2)
m2 · · · (s− λk)

mk . The ordering of the
λi is chosen to be such that m1 ≤ m2 ≤ . . . ≤ mk. Compute the minimum number of inputs required (that
is the minimum size of ni) so as to make the pair (A,B) completely controllable. Similarly, compute the
minimum value of no to make the pair (A,C) completely observable.

Problem 4
Observability Tests for LTI Systems. Consider the following theorem:

Theorem 1 Consider an LTI system (A,B,C) with A ∈ Rn×n, B ∈ Rn×ni , C ∈ Rno×n. The following
statements are equivalent:

1. The LTI system represented by (A,C) is completely observable on some [0,∆]

2. rank


C
CA
...

CAn−1

 = n

3. rank
[

sI −A
C

]
= n, ∀s ∈ σ(A)

Prove the following 4 directions:

• 1. ⇒ 2.

• 2. ⇒ 1.
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• 2. ⇒ 3.

• 3. ⇒ 2.

Hint: One way to prove these is to consider the matrices (AT , CT ) and follow the controllability results
directly

Problem 5
A prequel question to controller design. Consider the linear time invariant system with state equation: ẋ1

ẋ2

ẋ3

 =

 0 1 0
0 0 1

−α3 −α2 −α1

 ẋ1

ẋ2

ẋ3

+

 0
0
1

u

Insert state feedback: the input to the overall closed loop system is v and u = v − kTx where k is a
constant row vector. Show that given any polynomial p(s) =

∑3
k=0 bks

3−k with b0 = 1, there is a row
vector k such that the closed loop system has p(s) as its characteristic equation. (This naturally extends
to n dimensions and implies that any system with a representation that can be put into the form above,
called Controllable Canonical Form, can be stabilized by state feedback.)

Problem 6
State vs. Output Feedback. Consider a dynamical system described by:

ẋ =Ax+Bu

y =Cx

where
A =

[
0 1
7 −4

]
, B =

[
1
2

]
, C =

[
1 3

]
For each of cases below, derive a state space representation of the resulting closed loop system, and deter-

mine the characteristic equation of the resulting closed loop "A" matrix (called the closed loop characteristic
equation):

1. u = −[f1 f2]x

2. u = −ky (here k ∈ R)

Problem 7
Feedback control design by eigenvalue placement. Consider the dynamic system:

d4θ

dt4
+ α1

d3θ

dt3
+ α2

d2θ

dt2
+ α3

dθ

dt
+ α4θ = u

where u represents an input force, αi are real scalars. Assuming that d3θ
dt3 ,

d2θ
dt2 ,

dθ
dt and θ can all be measured,

design a state feedback control scheme which places the closed-loop eigenvalues at s1 = −1, s2 = −1,
s3 = −1 + j1, s4 = −1− j1.

2



Figure 1: Simple model of a DC Servo system

Problem 8
Observer design. Figure shows a block diagram representation of a simple model of a DC servo system:
x1 is a voltage signal proportional to the output angular velocity x2.

1. Design a full order observer, with observer gain matrix T given by

T =

[
T1

T2

]
,

for x1 and x2 so that the characteristic polynomial associated with the error dynamics is given by:

∆e(s) = s2 + 2ζeωes+ ω2
e

("Design" means to write down the equations for the observer, with expressions for gains T1 and T2.)

2. Now, the observer is a system with inputs u and x1, and outputs ẑ1 and ẑ2. Thus, there are four
possible transfer functions between inputs and outputs - these may be included as elements in a 2× 2
matrix. Evaluate the followint matrix of transfer functions M(s) between the inputs to the observer
u and x1, and its outputs ẑ1 and ẑ2 :

M(s) =

[
ẑ1(s)/u(s) ẑ1(s)/x1(s)
ẑ2(s)/u(s) ẑ2(s)/x1(s)

]
as a function of gains T1 and T2, as well as system parameters a1 and a2.

3. Now determine M(s) as T2 → ∞. Discuss the meaning of the result.

Problem 9

Figure 2: Simple robotic arm

Control of a Flexible Robot Arm. A simplified model for the control of a flexible robotic arm is
shown in Figure . Here, k is a spring constant which models the flexibility of the arm, M represents the
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mass of the arm, y, the output, is the mass position, and u, the input, is the position of the end of the
spring. Here, k/M = 900 rad/s2.

The equations of motion for this system are thus given by Mÿ + k(y − u) = 0. Define state variables
x1 = y, x2 = ẏ.

1. Write the equations of motion in state space form. Where are the open loop eigenvalues?

2. Design a full state observer with observer eigenvalues at s = −100± 100j.

3. Could both state-variables of the system be estimated if only a measurement of ẏ were available?

4. Design a state feedback controller with gain matrix F giving the closed loop system roots at s =
−20± 20j.

5. Would it be reasonable to design a control law for the system with roots at s = −200±200j? Explain
why or why not.
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