EE650 Linear System Theory

Final

Your answers must be supported by analysis, proof, or counterexample. You may quote the results that we derived in class in your solutions. There are 8 questions: Please make sure your exam paper has all 8 questions. Approximate points for each question are indicated.

You are allowed to use one 8.5×11 cheat sheet (both sides).

Problem 1

Linear Quadratic Regulator (8 points). Consider the following discrete linear time-invariant dynamical system:

$$
\begin{aligned}
x_{t+1} & =A x_{t}+B u_{t}, t \in\{0,1, \ldots, N-1\} \\
x_{0} & =x^{i n i t},
\end{aligned}
$$

and the cost function:

$$
J\left(U, x_{0}\right)=\sum_{\tau=0}^{N-1}\left(\left(x_{\tau}-x^{*}\right)^{T} Q\left(x_{\tau}-x^{*}\right)+\left(u_{\tau}-u^{*}\right)^{T} R\left(u_{\tau}-u^{*}\right)\right)+\left(x_{N}-x^{*}\right)^{T} Q_{f}\left(x_{N}-x^{*}\right)
$$

where $Q, R, Q_{f} \succ 0$ are positive definite matrices and $U:=\left(u_{0}, u_{1}, \ldots, u_{N-1}\right)$. We say a reference point $\left(x^{*}, u^{*}\right)$ is dynamically feasible if it satisfies the system dynamics that is:

$$
x^{*}=A x^{*}+B u^{*},
$$

otherwise, the reference point is called dynamically infeasible.
Suppose that the reference point $\left(x^{*}, u^{*}\right)$ is dynamically feasible. Derive the optimal LQR control policy and cost-to-go function that minimize $J\left(U, x_{0}\right)$ subject to the system dynamics.

Problem 2

Cayley-Hamilton Theorem (4 points). Consider the following matrix:

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right]
$$

1. Find the characteristic polynomial of A.
2. Express A^{4} in terms of the lowest degree polynomial in A.
3. Using Cayley-Hamilton theorem, show that $e^{A t}=\alpha_{0}(t) I+\alpha_{1}(t) A$ for some scalar functions $\alpha_{0}(\cdot)$ and $\alpha_{1}(\cdot)$. Explicitly compute these scalar functions.

Problem 3

Internal stability (4 points). Consider the system $\dot{x}=A x$ with

1. $A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
2. $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$

Discuss the stability of the origin of each system.

Problem 4

Exponential stability and Controllability (6 points). S
Suppose that the LTI system (A, B) is completely controllable, and that there exists a symmetric, positive definite matrix P such that

$$
A P+P A^{T}=-B B^{T}
$$

Show that all eigenvalues of A have negative real parts.
Hint: If λ is an eigenvalue of A, and e is the corresponding left eigenvector, then $e \neq 0$ and $e^{T} A=\lambda e^{T}$. Also, \bar{e} (complex conjugate) is a left eigenvalue for the eigenvalue $\bar{\lambda}$.

Problem 5

Controllability (4 points). For each of the following, provide either a proof or a counterexample:

- Suppose (A, B) is controllable. Is the system $\left(A^{2}, B\right)$ controllable?
- Suppose $\left(A^{2}, B\right)$ is controllable. Is the system (A, B) controllable?

Problem 6

Controllability and Observability of Augmented Systems (8 points).
Suppose that the single input single output systems $L_{1}=\left(A_{1}, b_{1}, c_{1}^{T}\right)$ and $L_{2}=\left(A_{2}, b_{2}, c_{2}^{T}\right)$ are each completely controllable and completely observable. Discuss the controllability and observability of the systems:

$$
\begin{gathered}
L_{3}=\left(\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right],\left[\begin{array}{c}
b_{1} \\
b_{2}
\end{array}\right],\left[c_{1}^{T}, c_{2}^{T}\right]\right) \\
L_{4}=\left(\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right],\left[\begin{array}{cc}
b_{1} & 0 \\
0 & b_{2}
\end{array}\right],\left[\begin{array}{cc}
c_{1}^{T} & 0^{T} \\
0^{T} & c_{2}^{T}
\end{array}\right]\right)
\end{gathered}
$$

in the two cases:

- when A_{1} and A_{2} have no common eigenvalues;
- when A_{1} and A_{2} have at least one eigenvalue in common.

Problem 7

Designing B for Controllability (6 points).
Consider the following system matrix A :

$$
A=\left[\begin{array}{ccccccc}
-3 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & -3 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -3 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -4 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -4 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -4
\end{array}\right]
$$

Find the minimum number of inputs needed for the system to be controllable. Find a corresponding matrix B that ensures that the system is controllable.

Problem 8

Observer design (10 points). The Figure below shows a velocity observation system where x_{1} is the velocity to be observed.

An observer is to be constructed to track x_{1}, using u and x_{2} as inputs. The variable x_{2} is obtained from x_{1} through a sensor having the known transfer function $\frac{2-s}{2+s}$ as shown in the Figure above.

1. (3 points) Derive a set of state-space equations for the system with state variables x_{1} and x_{2}, input u and output x_{2}.
2. (2 points) Design an observer with states z_{1} and z_{2} to track x_{1} and x_{2} respectively. Choose both observer eigenvalues to be at -4 . Write out the state space equations for the observer.
3. (3 points) Derive the combined state equation for the system plus observer. Take as state variables $x_{1}, x_{2}, e_{1}=x_{1}-z_{1}$, and $e_{2}=x_{2}-z_{2}$. Take u as input and z_{1} as the output. Is this system controllable and/or observable? Give physical reasons for any states being uncontrollable or unobservable.
4. (2 points) What is the transfer function relating u to z_{1} ? Explain your result.
