EE650 Linear System Theory Final

Your answers must be supported by analysis, proof, or counterexample. You may quote the results that we derived in class in your solutions. There are 8 questions: Please make sure your exam paper has all 8 questions. Approximate points for each question are indicated.

You are allowed to use one 8.5×11 cheat sheet (both sides).

Problem 1

Linear Quadratic Regulator (8 points). Consider the following discrete linear time-invariant dynamical system:

$$x_{t+1} = Ax_t + Bu_t, t \in \{0, 1, \dots, N-1\}$$
$$x_0 = x^{init},$$

and the cost function:

$$J(U, x_0) = \sum_{\tau=0}^{N-1} \left((x_{\tau} - x^*)^T Q(x_{\tau} - x^*) + (u_{\tau} - u^*)^T R(u_{\tau} - u^*) \right) + (x_N - x^*)^T Q_f(x_N - x^*)$$

where $Q, R, Q_f \succ 0$ are positive definite matrices and $U := (u_0, u_1, \ldots, u_{N-1})$. We say a reference point (x^*, u^*) is dynamically feasible if it satisfies the system dynamics that is:

$$x^* = Ax^* + Bu^*,$$

otherwise, the reference point is called dynamically infeasible.

Suppose that the reference point (x^*, u^*) is dynamically feasible. Derive the optimal LQR control policy and cost-to-go function that minimize $J(U, x_0)$ subject to the system dynamics.

Cayley-Hamilton Theorem (4 points). Consider the following matrix:

$$A = \left[\begin{array}{rrr} 1 & 1 \\ 0 & 2 \end{array} \right]$$

- 1. Find the characteristic polynomial of A.
- 2. Express A^4 in terms of the lowest degree polynomial in A.
- 3. Using Cayley-Hamilton theorem, show that $e^{At} = \alpha_0(t)I + \alpha_1(t)A$ for some scalar functions $\alpha_0(\cdot)$ and $\alpha_1(\cdot)$. Explicitly compute these scalar functions.

Internal stability (4 points). Consider the system $\dot{x} = Ax$ with

1.
$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

2.
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Discuss the stability of the origin of each system.

Exponential stability and Controllability (6 points). S

Suppose that the LTI system (A, B) is completely controllable, and that there exists a symmetric, positive definite matrix P such that

$$AP + PA^T = -BB^T$$

Show that all eigenvalues of A have negative real parts.

Hint: If λ is an eigenvalue of A, and e is the corresponding left eigenvector, then $e \neq 0$ and $e^T A = \lambda e^T$. Also, \bar{e} (complex conjugate) is a left eigenvalue for the eigenvalue $\bar{\lambda}$.

Controllability (4 points). For each of the following, provide either a proof or a counterexample:

- Suppose (A, B) is controllable. Is the system (A^2, B) controllable?
- Suppose (A^2, B) is controllable. Is the system (A, B) controllable?

Controllability and Observability of Augmented Systems (8 points).

Suppose that the single input single output systems $L_1 = (A_1, b_1, c_1^T)$ and $L_2 = (A_2, b_2, c_2^T)$ are each completely controllable and completely observable. Discuss the controllability and observability of the systems:

$$L_{3} = \left(\begin{bmatrix} A_{1} & 0\\ 0 & A_{2} \end{bmatrix}, \begin{bmatrix} b_{1}\\ b_{2} \end{bmatrix}, \begin{bmatrix} c_{1}^{T}, c_{2}^{T} \end{bmatrix} \right)$$
$$L_{4} = \left(\begin{bmatrix} A_{1} & 0\\ 0 & A_{2} \end{bmatrix}, \begin{bmatrix} b_{1} & 0\\ 0 & b_{2} \end{bmatrix}, \begin{bmatrix} c_{1}^{T} & 0^{T}\\ 0^{T} & c_{2}^{T} \end{bmatrix} \right)$$

in the two cases:

- when A_1 and A_2 have no common eigenvalues;
- when A_1 and A_2 have at least one eigenvalue in common.

Designing B for Controllability (6 points).

Consider the following system matrix ${\cal A}$:

$$A = \begin{bmatrix} -3 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -3 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -4 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -4 \end{bmatrix}$$

Find the minimum number of inputs needed for the system to be controllable. Find a corresponding matrix B that ensures that the system is controllable.

Observer design (10 points). The Figure below shows a velocity observation system where x_1 is the velocity to be observed.

An observer is to be constructed to track x_1 , using u and x_2 as inputs. The variable x_2 is obtained from x_1 through a sensor having the known transfer function $\frac{2-s}{2+s}$ as shown in the Figure above.

- 1. (3 points) Derive a set of state-space equations for the system with state variables x_1 and x_2 , input u and output x_2 .
- 2. (2 points) Design an observer with states z_1 and z_2 to track x_1 and x_2 respectively. Choose both observer eigenvalues to be at -4. Write out the state space equations for the observer.
- 3. (3 points) Derive the combined state equation for the system plus observer. Take as state variables $x_1, x_2, e_1 = x_1 z_1$, and $e_2 = x_2 z_2$. Take u as input and z_1 as the output. Is this system controllable and/or observable? Give physical reasons for any states being uncontrollable or unobservable.
- 4. (2 points) What is the transfer function relating u to z_1 ? Explain your result.