## EE650 Linear System Theory Midterm

Your answers must be supported by analysis, proof, or counterexample. If you are asked to find the conditions under which a property holds, try to seek the most general conditions (the least restrictive conditions). There are 7 questions: approximate points for each question are indicated. The total number of possible points for the midterm is 44.

Useful Inverse Laplace Transform: $\mathcal{L}^{-1}\left(\frac{a}{s-b}\right)=a e^{b t}$

## Problem 1

Vector spaces, linear independence (5 points). Suppose that the set of vectors $\left\{v_{1}, v_{2} \ldots, v_{n}\right\}$ is linear dependent in $V$ and $w \in V$. Prove that if $\left\{v_{1}+w, v_{2}+w, \ldots, v_{n}+w\right\}$ is a set of linearly dependent vectors then $w \in \operatorname{span}\left\{v_{1}, v_{2} \ldots, v_{n}\right\}$.

## Problem 2

Properties of Linear maps (10 points).

1. Consider a linear map $\mathcal{A}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ such that $N(\mathcal{A})=\left\{x \in \mathbb{R}^{4}: x_{1}=2 x_{2}\right.$ and $\left.x_{3}=8 x_{4}\right\}$. Is $\mathcal{A}$ subjective? Why or why not?
2. Let $\mathcal{B}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear map. Can $\mathcal{B}$ be subjective? Explain.

## Problem 3

Properties of linear equations ( 6 points). Suppose that you are given a vector $y \in \mathbb{R}^{m}$ and a matrix $A \in \mathbb{R}^{m \times n}$

1. (3 points) Under which condition(s) does there exist a solution $x \in \mathbb{R}^{n}$ to the linear equation $y=A x$ ?
2. (3 points) Under which condition(s) is this solution unique?

## Problem 4

Matrix representation of a linear map (4 points).
Consider a linear map $\mathcal{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and consider two bases for $\mathbb{R}^{2}$ :

$$
E=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}, B=\left\{\left[\begin{array}{l}
3 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}
$$

Suppose that:

$$
\mathcal{A}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \mathcal{A}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
-3 \\
-2
\end{array}\right]
$$

Calculate the matrix representation of $\mathcal{A}$ with respect to the basis $B$.

## Problem 5

Solutions to differential equations (5 points).
Consider the differential equation $\dot{x}=f(x)$ where

$$
f(x)=\left[\begin{array}{c}
-x_{1}+x_{1} x_{2} \\
x_{2}-x_{1} x_{2}
\end{array}\right]
$$

Derive a local Lipschiz constant for the vector field.

## Problem 6

Adjoints (4 points).
Let $\mathcal{A}: U \rightarrow V$ be a linear map, with $U$ and $V$ Hilbert spaces. Show that $R(\mathcal{A}) \perp N\left(\mathcal{A}^{*}\right)$.

## Problem 7

Solution to linear time-invariant system (10 points).
Consider a single-input, single-output, time invariant linear state equation

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)
\end{aligned}
$$

where

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-6 & -7
\end{array}\right] ; B=\left[\begin{array}{l}
0 \\
1
\end{array}\right] ; C=\left[\begin{array}{cc}
1 & 1
\end{array}\right]
$$

and $t_{0}=0$.

1. Suppose $u(t)=0$ for $t \geq 0$. Describe what happens to the output signal for any non-zero initial state.
2. Now suppose $u(t)=1$ for $t \geq 1$. Describe what happens to the output signal for any non-zero initial state.
